Skip to main content
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Faculty of Science Department of Zoology

Main navigation

  • About
    • Message from Head
    • Department History
    • News
    • Publications
    • ZOOTAILS - the zoology newsletter
    • Welcome New Faculty
    • In Memoriam
    • Departmental Announcements
    • Contacts and Information
    • Jobs
    • Buildings
    • Transportation & Parking
  • People
    • People
    • Faculty - Research
    • Faculty - Educational leadership
    • Lecturers
    • Staff
    • Graduate Students
    • Postdoctoral Fellows
    • Associate Members
    • Adjunct Members
    • Affiliate Members
    • Research Associates
    • Research Lab staff
    • Emeriti
    • Alumni
    • Awards
  • Research
    • Research
    • Facilities
    • Affiliated Research Centres
    • Graduate Theses
  • Undergraduate Program
    • Undergraduate Program
    • Undergraduate Research Opportunities
    • Biology Program
    • UBC Sciences – Biology
  • Graduate Program
    • Graduate Program
    • Prospective Students
    • Newly Admitted Students
    • Current Students
    • Program Policies & Procedures
    • Student Resources
    • Department Forms
    • Zoology Graduate Student Association
    • Student Stories
    • Contacts
  • Events
    • Events
    • Weekly Seminars
    • Special Seminars and Events
    • CELL seminars
    • Discussion Groups
    • Calendar
    • Event Archive
  • Resources
    • Biostats and Data Science Faculty search (CWL login)
    • Resources
    • Safety
    • Onboarding
    • Workday
    • Building access: keys and cards
    • Room and Vehicle Bookings: Biosci & BRC (log in)
    • Room Bookings: North & East wings Biosci
    • Shipping & Receiving
    • Staff Directory
    • Aquatics (private)
    • Computing (ZCU)
    • Finance
    • HR: Human Resources
    • Equity, Diversity and Inclusion Resources
    • Harassment and Discrimination complaints: steps and resources
    • Zoology Internal pages (private)
    • Recycling initiatives
    • Zoology Logo
    • Zoology Workshop
  • CWL Login

Breadcrumb

Home
»
About
»
News

Main Menu: Secondary

  • Message from Head
  • Department History
    • About the "Huts"
  • News
  • Publications
  • ZOOTAILS - the zoology newsletter
  • Welcome New Faculty
  • In Memoriam
  • Departmental Announcements
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
  • Contacts and Information
  • Jobs
    • Past jobs
  • Buildings
  • Transportation & Parking

"Why whales don’t get brain damage when they swim"

September 22, 2022

Press
Canadian Geographic, Sept 28, 2022: Wildlife Wednesday: The “wonderful net” protecting whales and dolphins from deep-sea brain damage
Scientific American, Sept 22, 2022 - The Purpose of Dolphins’ Mysterious Brain Net May Finally Be Understood
New Scientist, Sept 22, 2022 - Web of blood vessels helps protect whales’ brains while swimming
The Independent, Sept 22, 2022 - Study sheds light on why whales do not get brain damage when they swim
earth.com, Sept 22, 2022 - How do whales avoid brain damage while swimming?
Evening Standard, Sept 22, 2022 - Study sheds light on why whales do not get brain damage when they swim
Phys Org, Sept 22, 2022 - Why whales don't get brain damage when they swim
The Irish News, Sept 22, 2022 - Study sheds light on why whales do not get brain damage when they swim
Aol., Sept 22, 2022 - Study sheds light on why whales do not get brain damage when they swim
Eureka, Set 22, 2022 - Why whales don’t get brain damage when they swim
UBC Science, Sept 22, 2022 - News tip: Why whales don’t get brain damage when they swim
_______________________

M. A. Lillie, A. W. Vogl, S., G. Gerard, S. Ravertyand, R. E. Shadwick. 2022. Retia mirabilia: Protecting the cetacean brain from locomotion-generated blood pressure pulses. Science

Abstract
Cetaceans have massive vascular plexuses (retia mirabilia) whose function is unknown. All cerebral blood flow passes through these retia, and we hypothesize that they protect cetacean brains from locomotion-generated pulsatile blood pressures. We propose that cetaceans have evolved a pulse-transfer mechanism that minimizes pulsatility in cerebral arterial-to-venous pressure differentials without dampening the pressure pulses themselves. We tested this hypothesis using a computational model based on morphology from 11 species and found that the large arterial capacitance in the retia, coupled with the small extravascular capacitance in the cranium and vertebral canal, could protect the cerebral vasculature from 97% of systemic pulsatility. Evolution of the retial complex in cetaceans—likely linked to the development of dorsoventral fluking—offers a distinctive solution to adverse locomotion-generated vascular pulsatility.

Department of Zoology
#3051 - 6270 University Blvd.
Vancouver, BC Canada V6T 1Z4
604 822 2131
E-mail zoology.info@ubc.ca
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • UBC Copyright |
  • Accessibility