Skip to main content
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Faculty of Science Department of Zoology

Main navigation

  • About
    • Message from Head
    • Department History
    • News
    • Publications
    • ZOOTAILS - the zoology newsletter
    • Welcome New Faculty
    • In Memoriam
    • Departmental Announcements
    • Contacts and Information
    • Jobs
    • Buildings
    • Transportation & Parking
  • People
    • People
    • Faculty - Research
    • Faculty - Educational leadership
    • Lecturers
    • Staff
    • Graduate Students
    • Postdoctoral Fellows
    • Associate Members
    • Adjunct Members
    • Affiliate Members
    • Research Associates
    • Research Lab staff
    • Emeriti
    • Alumni
    • Awards
  • Research
    • Research
    • Facilities
    • Affiliated Research Centres
    • Graduate Theses
  • Undergraduate Program
    • Undergraduate Program
    • Undergraduate Research Opportunities
    • Biology Program
    • UBC Sciences – Biology
  • Graduate Program
    • Graduate Program
    • Prospective Students
    • Newly Admitted Students
    • Current Students
    • Program Policies & Procedures
    • Student Resources
    • Department Forms
    • Zoology Graduate Student Association
    • Student Stories
    • Contacts
  • Events
    • Events
    • Weekly Seminars
    • Special Seminars and Events
    • CELL seminars
    • Discussion Groups
    • Calendar
    • Event Archive
  • Resources
    • Biostats and Data Science Faculty search (CWL login)
    • Resources
    • Safety
    • Onboarding
    • Workday
    • Building access: keys and cards
    • Room and Vehicle Bookings: Biosci & BRC (log in)
    • Room Bookings: North & East wings Biosci
    • Shipping & Receiving
    • Staff Directory
    • Aquatics (private)
    • Computing (ZCU)
    • Finance
    • HR: Human Resources
    • Equity, Diversity and Inclusion Resources
    • Harassment and Discrimination complaints: steps and resources
    • Zoology Internal pages (private)
    • Recycling initiatives
    • Zoology Logo
    • Zoology Workshop
  • CWL Login

Breadcrumb

Home
»
About
»
Publications

Main Menu: Secondary

  • Message from Head
  • Department History
    • About the "Huts"
  • News
  • Publications
  • ZOOTAILS - the zoology newsletter
  • Welcome New Faculty
  • In Memoriam
  • Departmental Announcements
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
  • Contacts and Information
  • Jobs
    • Past jobs
  • Buildings
  • Transportation & Parking

Wood et al. Journal of Comparative Physiology B

April 7, 2025

Wood, C.M., Pelster, B. & Val, A.L. 2025. Is the air-breathing organ a significant route for CO2 excretion during aquatic hypercapnia in the pirarucu, Arapaima gigas? Journal of Comparative Physiology B, 195, 39–51

Abstract
The pirarucu is one of the very few obligate air-breathing fish, employing a gigantic, highly vascularized air-breathing organ (ABO). Traditionally, the ABO is thought to serve mainly for O2 uptake (ṀO2), with the gills providing the major route for excretion of CO2 (ṀCO2) and N-waste. However, under aquatic hypercapnia, a common occurrence in its natural environment, branchial ṀCO2 to the water may become impaired. Under these conditions, does the ABO become an important route of ṀCO2 excretion to the air? We have answered this question by measuring ṀCO2 and ṀO2 in both air and water phases, as well as the pattern of air-breathing, in pirarucu under aquatic normocapnia and hypercapnia (3% CO2). Indeed, ṀCO2 to the air phase via the ABO increased 2- to 3-fold during exposure to high water PCO2, accounting for 59–71% of the total, with no change in the dominant contribution of the ABO to ṀO2 (71–75% of the total). These adjustments were quickly reversed upon restoration of aquatic normocapnia. During aquatic hypercapnia, ṀCO2 via the ABO became more effective over time, and the pattern of air-breathing changed, exhibiting increased frequency and decreased breath volume. Ammonia-N excretion (86–88% of total) dominated over urea-N excretion and tended to increase during exposure to aquatic hypercapnia. We conclude that the ability of the ABO to take on the dominant role in CO2 excretion when required may have been an important driver in the original evolution of air-breathing, as well as in the functionality of the ABO in modern air-breathing fish.

Department of Zoology
#3051 - 6270 University Blvd.
Vancouver, BC Canada V6T 1Z4
604 822 2131
E-mail zoology.info@ubc.ca
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • UBC Copyright |
  • Accessibility