Skip to main content
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Faculty of Science Department of Zoology

Main navigation

  • About
    • Message from Head
    • Department History
    • News
    • Publications
    • ZOOTAILS - the zoology newsletter
    • Welcome New Faculty
    • In Memoriam
    • Departmental Announcements
    • Contacts and Information
    • Jobs
    • Buildings
    • Transportation & Parking
  • People
    • People
    • Faculty - Research
    • Faculty - Educational leadership
    • Lecturers
    • Staff
    • Graduate Students
    • Postdoctoral Fellows
    • Associate Members
    • Adjunct Members
    • Affiliate Members
    • Research Associates
    • Research Lab staff
    • Emeriti
    • Alumni
    • Awards
  • Research
    • Research
    • Facilities
    • Affiliated Research Centres
    • Graduate Theses
  • Undergraduate Program
    • Undergraduate Program
    • Undergraduate Research Opportunities
    • Biology Program
    • UBC Sciences – Biology
  • Graduate Program
    • Graduate Program
    • Prospective Students
    • Newly Admitted Students
    • Current Students
    • Program Policies & Procedures
    • Student Resources
    • Department Forms
    • Zoology Graduate Student Association
    • Student Stories
    • Contacts
  • Events
    • Events
    • Weekly Seminars
    • Special Seminars and Events
    • CELL seminars
    • Discussion Groups
    • Calendar
    • Event Archive
  • Resources
    • Biostats and Data Science Faculty search (CWL login)
    • Resources
    • Safety
    • Onboarding
    • Workday
    • Building access: keys and cards
    • Room and Vehicle Bookings: Biosci & BRC (log in)
    • Room Bookings: North & East wings Biosci
    • Shipping & Receiving
    • Staff Directory
    • Aquatics (private)
    • Computing (ZCU)
    • Finance
    • HR: Human Resources
    • Equity, Diversity and Inclusion Resources
    • Harassment and Discrimination complaints: steps and resources
    • Zoology Internal pages (private)
    • Recycling initiatives
    • Zoology Logo
    • Zoology Workshop
  • CWL Login

Breadcrumb

Home
»
About
»
Publications

Main Menu: Secondary

  • Message from Head
  • Department History
    • About the "Huts"
  • News
  • Publications
  • ZOOTAILS - the zoology newsletter
  • Welcome New Faculty
  • In Memoriam
  • Departmental Announcements
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
  • Contacts and Information
  • Jobs
    • Past jobs
  • Buildings
  • Transportation & Parking

Cristiani et al. FACETS

April 14, 2025
Fig. 2. Seagrass meadows and 21-day dispersal connection probabilities in the Salish Sea. Connections are a visual representation of the connectivity matrix (c) used in the impacts and metapopulation analysis. Potential connectivity among seagrass meadows was measured in Cristiani et al. (2021) using a biophysical model of oceanographic currents and dispersal traits. In this study, we focus on the connectivity of seagrass associated species that are represented by a 21-day planktonic larval duration. Map credits: (World Hillshade: Esri 2015, Ocean Basemap: Esri 2018; seagrass: Cristiani et al. 2021).

John Cristiani, Emily M Rubdge, and Mary o'Connor. 2025. Anthropogenic impacts on seagrass habitat connectivity: a model to explore potential links between human activity and marine invertebrate metapopulation persistence. FACETS

Abstract
Coastal ecosystems face numerous stressors from anthropogenic activities. Furthermore, local stressors that directly impact ecological processes in one location can scale up to have indirect regional consequences. In the case of dispersing marine invertebrates, human activity may impact dispersal and survival rates, which can then alter connectivity patterns and metapopulation dynamics across the seascape. Here, we developed a framework to model metapopulation persistence of seagrass-associated invertebrates in the Salish Sea, focusing primarily on British Columbia, Canada. We combined a biophysical model of dispersal with metrics of habitat naturalness to model how local human activities that may impact dispersal can alter habitat connectivity patterns and potentially impact regional metapopulation persistence. We found that human activities that potentially impact dispersal can reduce population persistence across a region, although the effect varied based on location, population dynamics, and severity of the impacts modeled. The majority of populations, however, remained persistent, suggesting that there are robust and redundant pathways of dispersal that can maintain population connectivity in the face of local disturbances. This study highlights the importance of understanding human impacts and connectivity together in a regional context which could have implications for future marine spatial planning and the effective management of biodiversity.

Department of Zoology
#3051 - 6270 University Blvd.
Vancouver, BC Canada V6T 1Z4
604 822 2131
E-mail zoology.info@ubc.ca
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • UBC Copyright |
  • Accessibility