Skip to main content
The University of British Columbia
UBC - A Place of Mind
The University of British Columbia
Faculty of Science Department of Zoology

Main navigation

  • About
    • Message from Head
    • Department History
    • News
    • Publications
    • ZOOTAILS - the zoology newsletter
    • Welcome New Faculty
    • In Memoriam
    • Departmental Announcements
    • Contacts and Information
    • Jobs
    • Buildings
    • Transportation & Parking
  • People
    • People
    • Faculty - Research
    • Faculty - Educational leadership
    • Lecturers
    • Staff
    • Graduate Students
    • Postdoctoral Fellows
    • Associate Members
    • Adjunct Members
    • Affiliate Members
    • Research Associates
    • Research Lab staff
    • Emeriti
    • Alumni
    • Awards
  • Research
    • Research
    • Facilities
    • Affiliated Research Centres
    • Graduate Theses
  • Undergraduate Program
    • Undergraduate Program
    • Undergraduate Research Opportunities
    • Biology Program
    • UBC Sciences – Biology
  • Graduate Program
    • Graduate Program
    • Prospective Students
    • Newly Admitted Students
    • Current Students
    • Program Policies & Procedures
    • Student Resources
    • Department Forms
    • Zoology Graduate Student Association
    • Student Stories
    • Contacts
  • Events
    • Events
    • Weekly Seminars
    • Special Seminars and Events
    • CELL seminars
    • Discussion Groups
    • Calendar
    • Event Archive
  • Resources
    • Biostats and Data Science Faculty search (CWL login)
    • Resources
    • Safety
    • Onboarding
    • Workday
    • Building access: keys and cards
    • Room and Vehicle Bookings: Biosci & BRC (log in)
    • Room Bookings: North & East wings Biosci
    • Shipping & Receiving
    • Staff Directory
    • Aquatics (private)
    • Computing (ZCU)
    • Finance
    • HR: Human Resources
    • Equity, Diversity and Inclusion Resources
    • Harassment and Discrimination complaints: steps and resources
    • Zoology Internal pages (private)
    • Recycling initiatives
    • Zoology Logo
    • Zoology Workshop
  • CWL Login

Breadcrumb

Home
»
About
»
News

Main Menu: Secondary

  • Message from Head
  • Department History
    • About the "Huts"
  • News
  • Publications
  • ZOOTAILS - the zoology newsletter
  • Welcome New Faculty
  • In Memoriam
  • Departmental Announcements
    • 2025
    • 2024
    • 2023
    • 2022
    • 2021
    • 2020
    • 2019
  • Contacts and Information
  • Jobs
    • Past jobs
  • Buildings
  • Transportation & Parking

New publication: Matt Gilbert and Tony Farrell. Journal of Thermal Biology. See abstract...

February 16, 2021

Matthew J.H.Gilbert and Anthony P.Farrell. 2021. The thermal acclimation potential of maximum heart rate and cardiac heat tolerance in Arctic char (Salvelinus alpinus), a northern cold-water specialist. Journal of Thermal Biology

Abstract
Increasing heart rate (ƒH) is a central, if not primary mechanism used by fishes to support their elevated tissue oxygen consumption during acute warming. Thermal acclimation can adjust this acute response to improve cardiac performance and heat tolerance under the prevailing temperatures. We predict that such acclimation will be particularly important in regions undergoing rapid environmental change such as the Arctic. Therefore, we acclimated Arctic char (Salvelinus alpinus), a high latitude, cold-adapted salmonid, to ecologically relevant temperatures (2, 6, 10, 14 and 18 °C) and examined how thermal acclimation influenced their cardiac heat tolerance by measuring the maximum heart rate (ƒHmax) response to acute warming. As expected, acute warming increased ƒHmax in all Arctic char before ƒHmax reached a peak and then became arrhythmic. The peak ƒHmax, and the temperature at which peak ƒHmax (Tpeak) and that at which arrhythmia first occurred (Tarr) all increased progressively (+33%, 49% and 35%, respectively) with acclimation temperature from 2 to 14 °C. When compared at the same test temperature ƒHmax also decreased by as much as 29% with increasing acclimation temperature, indicating significant thermal compensation. The upper temperature at which fish first lost their equilibrium (critical thermal maximum: CTmax) also increased with acclimation temperature, albeit to a lesser extent (+11%). Importantly, Arctic char experienced mortality after several weeks of acclimation at 18 °C and survivors did not have elevated cardiac thermal tolerance. Collectively, these findings suggest that if wild Arctic char have access to suitable temperatures (<18 °C) for a sufficient duration, warm acclimation can potentially mitigate some of the cardiorespiratory impairments previously documented during acute heat exposure.

Department of Zoology
#3051 - 6270 University Blvd.
Vancouver, BC Canada V6T 1Z4
604 822 2131
E-mail zoology.info@ubc.ca
Back to top
The University of British Columbia
  • Emergency Procedures |
  • Terms of Use |
  • UBC Copyright |
  • Accessibility